

Amplitude Modulation

Modulation

How can information be encoded on an EM wave?

 $\oint \cos(2\pi f_c t + \Phi)$

Amplitude modulation: $A \rightarrow A(t)$ Frequency modulation: $f_c \rightarrow (f_c + f(t))$ Phase modulation: $\Phi \rightarrow \Phi(t)$ (*Recognize: Carrier frequency:* f_c)

What we want to know:

- the details of the modulation/demodulation, *
- frequency spectrum, *
- bandwidth of the modulated signal

Note: We will only cover the coding of analog information (e.g. traditional AM radio), 2 but there are other types of of encodings, for example digital (BPSK, QPSK, etc).

Modulation

Information is transferred in the changing characteristic of the signal Can change the amplitude, frequency or phase of the signal Modulation is needed for both wired and wireless communications

Amplitude modulation

x(t) – is the information we need to transmit

• Normalized between -1 and 1

AM radio has a defined limited bandwidth for x(t): 40 Hz – 10.2 kHz

• m is the 'modulation depth'

 $f_{c} - carrier$ Aut) $Am Signal S(t) = B [1+m x(t)] cos(2\pi f_{c}t)$ $f_{c} - arrier$ $f_{c} - arrier$ $f_{requered}$ $f_{requered}$ $f_{requered}$ $f_{requered}$

Amplitude modulation

Music signal example

Frequency spectrum of AM

 $S(t) = B [1+m x(t)] cos(2\pi f_c t)$

The frequency spectrum of x(t)

The frequency spectrum of S(t) $W_{c} \gamma \omega_{max}$

The bandwidth of S(t) is thus 2 x f_{max} , where f_{max} is the largest frequency present in signal x(t).

AM radio, $f_{max} \sim 10$ kHz, thus radio stations can be spaced ~20 kHz apart₈

AM demodulation

AM demodulation

$$S_{demod}(t) = B [0.5 + 0.5^{*} cos(2\pi 2^{*} f_{c}t) + 0.5m^{*} cos(2\pi (f_{m})t) + 0.25m^{*} cos(2\pi (2^{*} f_{c}+f_{m})t) + 0.25m^{*} cos(2\pi (2^{*} f_{c}-f_{m})t)]$$

$$= DC, 2f_{c}, (2f_{c} - f_{m}), (2f_{c} + f_{m}), (f_{m})$$

$$= Remove unwanted frequencies by filtering$$

$$= Recover f_{m}$$

$$= AM Demodulah$$

$$= Diode: does the "mixing" (non-ideal)$$

$$= Envclope Detector RC low pass filter$$

AM demodulation

 $S(t) = B [1+m x(t)] cos(2\pi f_c t) - rectified$

